Proposal for a Demand Forecasting Model for a Company of Industrial Food Equipment
Visualizações: 120DOI:
https://doi.org/10.56579/rei.v6i2.1153Keywords:
Demand Forecasting, Holt-Winters Method, Supply Chain PlanningAbstract
In increasingly competitive and dynamic scenarios, where the immediate fulfillment of market needs becomes a competitive advantage, being able to forecast future demand becomes a fundamental element for planning an organization's activities and decision-making. In this context, the present study aims to propose a demand forecasting model to guide the supply chain planning in a company specializing in industrial food equipment. The case study was divided into: qualitative and quantitative data collection, ABC classification and definition of product families to be analyzed, ABC classification and product definition based on the chosen family, analysis of the behavior and characteristics of the time series, definition and application of forecasting models, comparison between projected and actual values, and analysis of results. The study demonstrated that the Holt-Winters method is the appropriate model to be applied, based on the behavior and characteristics of seasonality and trends identified in the data series. The results indicate that, despite differences between the forecasted and actual demand values, the model remains applicable to the organization's reality.
Downloads
References
ABOLGHASEMI, M.; BEH, E.; TARR, G.; GERLACH, R. Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Computers & Industrial Engineering, v.142, p.1-12, 2020. https://doi.org/10.1016/j.cie.2020.106380 DOI: https://doi.org/10.1016/j.cie.2020.106380
ACKERMANN, A. E. F; SELLITTO, M. A. Demand forecasting methods: a literature review. Innovar, v. 32, n. 85, p. 83-99, 2022. https://doi.org/10.15446/innovar.v32n85.100979 DOI: https://doi.org/10.15446/innovar.v32n85.100979
AHMAR, A. S.; SINGH, P. K.; RULIANA, R.; PANDEY, A. K.; GUPTA, S. Comparison of ARIMA, SutteARIMA, and Holt-Winters, and NNAR Models to Predict Food Grain in India. Forecasting, v. 5, n. 1, p. 138-152, 2023. https://doi.org/10.3390/forecast5010006 DOI: https://doi.org/10.3390/forecast5010006
ALVES, C. C.; HOEPERS, E.; CORAZZA, E. J.; SANTOS, G. J.; CRISTOFOLINI, R.; CRUZ, A. C. Applicationof statistical methods with exponential smoothing double and triple for demand forecasting inthe inventory management. Revista Produção Online, v. 19, n. 3, p. 1001-1026, 2019. https://doi.org/10.14488/1676-1901.v19i3.3539 DOI: https://doi.org/10.14488/1676-1901.v19i3.3539
BENHAMIDA, F. Z.; KADDOURI, O.; OUHROUCHE, T.; BENAICHOUCHE, M.; MANSILLA, D. C.; IPIÑA, D. L. Demand Forecasting Tool For Inventory Control Smart Systems. Journal of communications software and systems, v. 17, n. 2, 2021. https://doi.org/10.24138/jcomss-2021-0068 DOI: https://doi.org/10.24138/jcomss-2021-0068
BONADIO, B.; HUO, Z.; LEVCHENKO, A. A.; NAYAR, N. P. Global supply chains in the pandemic. Journal of International Economics, v. 133, 2021. https://doi.org/10.1016/j.jinteco.2021.103534 DOI: https://doi.org/10.1016/j.jinteco.2021.103534
FAVERJON, C.; BEREZOWSKI, J. Choosing the Best Algorithm for Event Detection Based on the Intend Application: A Conceptual Framework for Syndromic Surveillance. J. Biomed. Inform, v. 85, p. 126-135, 2018. https://doi.org/10.1016/j.jbi.2018.08.001 DOI: https://doi.org/10.1016/j.jbi.2018.08.001
FILDES, R.; MA, S.; KOLASSA, S. Retail forecasting: Research and practice. International Journal of Forecasting, v.38, n. 4, 2022, p.1283-1318, 2022. https://doi.org/10.1016/j.ijforecast.2019.06.004 DOI: https://doi.org/10.1016/j.ijforecast.2019.06.004
FU, W.; CHIEN, C. F. UNISON data-driven intermittent demand forecast framework to empower supply chain resilience and an empirical study in electronics distribution. Computers & Industrial Engineering, v.135, p. 940-949, 2019. https://doi.org/10.1016/j.cie.2019.07.002 DOI: https://doi.org/10.1016/j.cie.2019.07.002
GREEN, K. C; ARMSTRONGBC, J. S. Simple versus complex forecasting: The evidenc. Journal of Business Research, v. 68, n. 8, p. 1678-1685, 2015. https://doi.org/10.1016/j.jbusres.2015.03.026 DOI: https://doi.org/10.1016/j.jbusres.2015.03.026
HYNDMAN, R. J.; ATHANASOPOULOS, G. Forecasting: principles and practice, 3rd. Australia: Melbourne, 2021.
HYNDMAN, R. J.; KOEHLER, A. B.; SNYDER, R. D.; GROSE, S. A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, v. 18, n. 3, p. 439-454, 2002. https://doi.org/10.1016/S0169-2070(01)00110-8 DOI: https://doi.org/10.1016/S0169-2070(01)00110-8
JOSHI, S. A review on sustainable supply chain network design: Dimensions, paradigms, concepts, framework and future directions. Sustainable Operations and Computers, v. 3, p.136-148, 2022. https://doi.org/10.1016/j.susoc.2022.01.001 DOI: https://doi.org/10.1016/j.susoc.2022.01.001
MIRANDA, R. G.; ANDRADE, G. J. P. O.; GERBER, J. Z.; BORNIA, A. C. Structured method to the process of demand planning in organizations. Revista ADMPG, v. 4, n. 2, 2019.
MIRCETIC, D.; TABAR, B. R.; NIKOLICIC, S.; MASLARIC, M. Forecasting hierarchical time series in supply chains: na empirical investigation. International Journal of Production Research, v. 60, n. 8, p. 2514-2533, 2022. https://doi.org/10.1080/00207543.2021.1896817 DOI: https://doi.org/10.1080/00207543.2021.1896817
PETROPOULOS, F.; APILETTI, D.; ASSIMAKOPOULOS, V.; BABAI, M. Z.; BARROW, D. K.; TAIEB, S. B. et al. Forecasting: Theory and Practice. International Journal of Forecasting, v. 38, n. 3, p. 705-871, 2022. https://doi.org/10.1016/j.ijforecast.2021.11.001 DOI: https://doi.org/10.1016/j.ijforecast.2021.11.001
PINÇE, Ç.; TURRINI, L.; MEISSNER, J. Intermittent demand forecasting for spare parts: A Critical review. Omega, v. 105. p. 2-14, 2021. https://doi.org/10.1016/j.omega.2021.102513 DOI: https://doi.org/10.1016/j.omega.2021.102513
ROSTAMI-TABAR, B.; BABAI; M.; ZIED, D. Y.; SYNTETOS, A. Non-stationary demand forecasting by cross-sectional aggregation. International Journal of Production Economics, v. 170, p. 297-309, 2015. https://doi.org/10.1016/j.ijpe.2015.10.001 DOI: https://doi.org/10.1016/j.ijpe.2015.10.001
TIRKEŞ, G.; GURAY, C.; ÇELEBI, N. Demand forecasting: a comparison between the holt-winters, trend analysis and decomposition models. Tehnički vjesnik, v. 24, n. 2, p. 503-509, 2017. https://doi.org/10.17559/TV-20160615204011 DOI: https://doi.org/10.17559/TV-20160615204011
TRULL, O.; DÍAZ, J. C. G.; TRONCOSO, A. Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models. Mathematics, v. 8, n. 2, p. 268, 2020. https://doi.org/10.3390/math8020268 DOI: https://doi.org/10.3390/math8020268
TUBINO, Dalvio Ferrari. Planejamento e controle da produção. 3.ed. São Paulo: Atlas, 2022.
VERÍSSIMO, A. J.; ALVES, C. C.; HENNING, E.; AMARAL, C. E.; CRUZ, A. C. Statistical methods exponential smoothing holtwinters to forecast demand in a company of the metal mechanic sector. Revista Gestão Industrial, v. 8, n. 4, p. 154-171, 2012. https://doi.org/10.3895/S1808-04482012000400009 DOI: https://doi.org/10.3895/S1808-04482012000400009
ZELLNER, M.; ABBAS, A. E.; BUDESCU, D. V.; GALSTYAN, A. A survey of humanjudgement and quantitativeforecasting methods. Royal Society, v. 8, n. 2, p. 1-30, 2021. https://doi.org/10.1098/rsos.201187 DOI: https://doi.org/10.1098/rsos.201187
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Interdisciplinary Studies Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of Interdisciplinary Studies adopts the Creative Commons Attribution 4.0 International License (CC BY 4.0), which allows for sharing and adapting the work, including for commercial purposes, provided proper attribution is given and the original publication in this journal is acknowledged.